Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Cells ; 12(2)2023 01 11.
Artículo en Inglés | MEDLINE | ID: mdl-36672221

RESUMEN

The serine/threonine protein kinase calcium/calmodulin-dependent protein kinase kinase 2 (CAMKK2) plays critical roles in a range of biological processes. Despite its importance, only a handful of inhibitors of CAMKK2 have been disclosed. Having a selective small molecule tool to interrogate this kinase will help demonstrate that CAMKK2 inhibition can be therapeutically beneficial. Herein, we disclose SGC-CAMKK2-1, a selective chemical probe that targets CAMKK2.

2.
J Biol Methods ; 9(2): e160, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35733440

RESUMEN

The regulation of cellular energetics is a complex process that requires the coordinated function of multiple organelles. Historically, studies focused on understanding cellular energy utilization and production have been overwhelmingly concentrated on the mitochondria. While mitochondria account for the majority of intracellular energy production, they alone are incapable of maintaining the variable energetic demands of the cell. The peroxisome has recently emerged as a secondary metabolic organelle that complements and improves mitochondrial performance. Although mitochondria and peroxisomes are structurally distinct organelles, they share key functional similarities that allows for the potential to repurpose readily available tools initially developed for mitochondrial assessment to interrogate peroxisomal metabolic function in a novel manner. To this end, we report here on procedures for the isolation, purification and real-time metabolic assessment of peroxisomal ß-oxidation using the Agilent Seahorse® system. When used together, these protocols provide a straightforward, reproducible and highly quantifiable method for measuring the contributions of peroxisomes to cellular and organismal metabolism.

3.
Mol Metab ; 62: 101513, 2022 08.
Artículo en Inglés | MEDLINE | ID: mdl-35562082

RESUMEN

OBJECTIVE: The liver is the primary internal metabolic organ that coordinates whole body energy homeostasis in response to feeding and fasting. Genetic ablation or pharmacological inhibition of calcium/calmodulin-dependent protein kinase kinase 2 (CaMKK2) has been shown to significantly improve hepatic health and peripheral insulin sensitivity upon overnutrition with high fat diet. However, the precise molecular underpinnings that explain this metabolic protection have remained largely undefined. METHODS: To characterize the role of CaMKK2 in hepatic metabolism, we developed and challenged liver-specific CaMKK2 knockout (CaMKK2LKO) mice with high fat diet and performed glucose and insulin tolerance tests to evaluate peripheral insulin sensitivity. We used a combination of RNA-Sequencing, glucose and fatty acid istotopic tracer studies, a newly developed Seahorse assay for measuring the oxidative capacity of purified peroxisomes, and a degenerate peptide libarary to identify putative CaMKK2 substrates that mechanistically explain the protective effects of hepatic CaMKK2 ablation. RESULTS: Consistent with previous findings, we show that hepatic CaMKK2 ablation significantly improves indices of peripheral insulin sensitivity. Mechanistically, we found that CaMKK2 phosphorylates and regulates GAPDH to promote glucose metabolism and PEX3 to blunt peroxisomal fatty acid catabolism in the liver. CONCLUSION: CaMKK2 is a central metabolic fuel sensor in the liver that significantly contributes to whole body systems metabolism.


Asunto(s)
Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/metabolismo , Resistencia a la Insulina , Animales , Calcio/metabolismo , Quinasa de la Proteína Quinasa Dependiente de Calcio-Calmodulina/genética , Ácidos Grasos , Glucosa/metabolismo , Resistencia a la Insulina/fisiología , Ratones
4.
Circulation ; 145(6): 448-464, 2022 02 08.
Artículo en Inglés | MEDLINE | ID: mdl-35034472

RESUMEN

BACKGROUND: The nuclear receptor Rev-erbα/ß, a key component of the circadian clock, emerges as a drug target for heart diseases, but the function of cardiac Rev-erb has not been studied in vivo. Circadian disruption is implicated in heart diseases, but it is unknown whether cardiac molecular clock dysfunction is associated with the progression of any naturally occurring human heart diseases. Obesity paradox refers to the seemingly protective role of obesity for heart failure, but the mechanism is unclear. METHODS: We generated mouse lines with cardiac-specific Rev-erbα/ß knockout (KO), characterized cardiac phenotype, conducted multi-omics (RNA-sequencing, chromatin immunoprecipitation sequencing, proteomics, and metabolomics) analyses, and performed dietary and pharmacological rescue experiments to assess the time-of-the-day effects. We compared the temporal pattern of cardiac clock gene expression with the cardiac dilation severity in failing human hearts. RESULTS: KO mice display progressive dilated cardiomyopathy and lethal heart failure. Inducible ablation of Rev-erbα/ß in adult hearts causes similar phenotypes. Impaired fatty acid oxidation in the KO myocardium, in particular, in the light cycle, precedes contractile dysfunctions with a reciprocal overreliance on carbohydrate utilization, in particular, in the dark cycle. Increasing dietary lipid or sugar supply in the dark cycle does not affect cardiac dysfunctions in KO mice. However, obesity coupled with systemic insulin resistance paradoxically ameliorates cardiac dysfunctions in KO mice, associated with rescued expression of lipid oxidation genes only in the light cycle in phase with increased fatty acid availability from adipose lipolysis. Inhibition of glycolysis in the light cycle and lipid oxidation in the dark cycle, but not vice versa, ameliorate cardiac dysfunctions in KO mice. Altered temporal patterns of cardiac Rev-erb gene expression correlate with the cardiac dilation severity in human hearts with dilated cardiomyopathy. CONCLUSIONS: The study delineates temporal coordination between clock-mediated anticipation and nutrient-induced response in myocardial metabolism at multi-omics levels. The obesity paradox is attributable to increased cardiac lipid supply from adipose lipolysis in the fasting cycle due to systemic insulin resistance and adiposity. Cardiac molecular chronotypes may be involved in human dilated cardiomyopathy. Myocardial bioenergetics downstream of Rev-erb may be a chronotherapy target in treating heart failure and dilated cardiomyopathy.


Asunto(s)
Ritmo Circadiano/fisiología , Miocardio/patología , Obesidad/fisiopatología , Animales , Relojes Circadianos , Cardiopatías , Humanos , Ratones , Ratones Noqueados
5.
Proc Natl Acad Sci U S A ; 117(49): 31353-31364, 2020 12 08.
Artículo en Inglés | MEDLINE | ID: mdl-33229578

RESUMEN

Progressive remodeling of the heart, resulting in cardiomyocyte (CM) loss and increased inflammation, fibrosis, and a progressive decrease in cardiac function, are hallmarks of myocardial infarction (MI)-induced heart failure. We show that MCB-613, a potent small molecule stimulator of steroid receptor coactivators (SRCs) attenuates pathological remodeling post-MI. MCB-613 decreases infarct size, apoptosis, hypertrophy, and fibrosis while maintaining significant cardiac function. MCB-613, when given within hours post MI, induces lasting protection from adverse remodeling concomitant with: 1) inhibition of macrophage inflammatory signaling and interleukin 1 (IL-1) signaling, which attenuates the acute inflammatory response, 2) attenuation of fibroblast differentiation, and 3) promotion of Tsc22d3-expressing macrophages-all of which may limit inflammatory damage. SRC stimulation with MCB-613 (and derivatives) is a potential therapeutic approach for inhibiting cardiac dysfunction after MI.


Asunto(s)
Ciclohexanonas/farmacología , Infarto del Miocardio/fisiopatología , Piridinas/farmacología , Receptores de Esteroides/metabolismo , Remodelación Ventricular/efectos de los fármacos , Animales , Diferenciación Celular/efectos de los fármacos , Fibroblastos/efectos de los fármacos , Fibroblastos/metabolismo , Fibroblastos/patología , Fibrosis , Pruebas de Función Cardíaca , Inflamación/patología , Macrófagos/efectos de los fármacos , Macrófagos/patología , Ratones , Infarto del Miocardio/genética , Infarto del Miocardio/patología , Células RAW 264.7 , ARN/genética , ARN/metabolismo , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...